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Weakly nonlinear internal waves 
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We derive general evolution equations for two-dimensional weakly nonlinear waves 
at the free surface in a system of two fluids of different densities. The thickness of the 
upper fluid layer is assumed to be small compared with the characteristic wavelength, 
but no restrictions are imposed on the thickness of the lower layer. We consider the 
case of a free upper boundary for its relevance in applications to ocean dynamics 
problems and the case of a non-uniform rigid upper boundary for applications to 
atmospheric problems. For the special case of shallow water, the new set of equations 
reduces to the Boussinesq equations for two-dimensional internal waves, whilst, for 
great and infinite lower-layer depth, we can recover the well-known Intermediate Long 
Wave and Benjamin-Ono models, respectively, for one-dimensional uni-directional 
wave propagation. Some numerical solutions of the model for one-dimensional 
waves in deep water are presented and compared with the known solutions of the 
uni-directional model. Finally, the effects of finite-amplitude slowly varying bottom 
topography are included in a model appropriate to the situation when the dependence 
on one of the horizontal coordinates is weak. 

1. Introduction 
In this paper, we consider weakly nonlinear internal waves in a two-fluid system 

with external forcing on the upper boundary which can be either free or rigid. 
The nonlinear evolution equations we derive govern, in their most general form, 
two-dimensional waves in a fluid of arbitrary depth. 

Weakly nonlinear models for the evolution of internal waves have been exten- 
sively studied in the past. Among these, for uni-directional waves, the Korteweg-de 
Vries (KdV) equation for shallow water (Benjamin 1966) and the Intermediate Long 
Wave (ILW) equation for a fluid of finite depth including the Benjamin-Ono (BO) 
equation for deep water are well known (Benjamin 1967; Davis & Acrivos 1967; 
Ono 1975; Joseph 1977; Kubota, KO & Dobbs 1978). On the other hand, models 
for two-dimensional waves have been derived only for the case of shallow water 
(the Boussinesq equations) although equations for weakly two-dimensional (but uni- 
directional) waves, in the so-called Kadomtsev & Petviashvili (1970) class, have been 
proposed for deep water (Ablowitz & Segur 1980). 

All these well-known models exhibit many interesting features, including, for ex- 
ample solitary wave solutions of permanent form. However, the restrictions used 
in the course of the derivation of these model equations in principle limit their 
application to more general problems. The most severe limitation is possibly the 
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fact that each of these models is valid only for a certain depth. Let hlo and hzo be 
the undisturbed depth of the upper and lower layers, respectively, and let L be a 
characteristic wavelength. The KdV and the Boussinesq models are valid for hlo/L+l 
and h20/h10 = 0(1) while the ILW equation is for hl0/L<1 and h20/h10+1. Therefore, 
there is no theory in between the KdV equation and the ILW equation which can 
cover the whole range of the ratio hz0/hI0. Moreover, since all previous models, 
with the exception of the Boussinesq equations, are for uni-directional waves (or 
weakly two-dimensional waves with a preferred direction of propagation), general 
wave propagation cannot be properly described by these models. This happens, for 
instance, whenever reflected waves need to be taken into account, like in the case 
of internal waves propagating over a non-uniform sea bed in the ocean or over a 
hill in the atmosphere. Also, the uni-directional equations model the propagation of 
internal wave modes only, and nonlinear interaction of waves from different modes 
such as the interaction between surface and internal waves is neglected. It is there- 
fore desirable to have a general model valid for two-dimensional waves in a fluid 
of arbitrary and non-uniform depth for real applications. This model should still 
afford the remarkable simplification over the original Euler equations achieved by the 
previously known models, yet it should be able to handle the more realistic situations 
mentioned above. 

Recently, for the case of a homogeneous fluid layer, much progress has been made 
in this direction. Evolution equations for surface waves correct up to the third-order 
non-linearity in wave slope for a fluid of finite depth have been derived by Matsuno 
(1992) for one-dimensional waves and Choi (1995) for two-dimensional waves. These 
equations are general enough to comprise most of the known nonlinear evolution 
equations for surface waves in the appropriate limits. For the case of internal waves, 
Matsuno (1993~) has recently derived a set of equations for one-dimensional waves in 
a two-layer fluid of arbitrary but uniform depth. In this paper, we extend the theory 
of two-dimensional surface waves to internal waves in a non-homogeneous medium 
and discuss its various limits. 

The physical set-ups we are interested in are sketched in figure 1. Both (a) free 
and (b )  rigid upper boundaries are considered in the analysis. Having in mind 
applications to the dynamics of the thin thermocline near the upper free surface in 
the ocean, we assume the depth of the upper layer to be small compared with a 
characteristic wavelength; however, we make no assumptions on the depth of the 
lower fluid. We consider a topographical disturbance on the rigid lid for the case 
of rigid upper boundary, while an applied pressure on the free surface is chosen as 
an external forcing for the free upper boundary case. The configuration depicted 
in (c ) ,  which can model flow over a mountain in the atmosphere, is a special case 
of the rigid-lid case in (b)  when the lower fluid is assumed to be infinitely deep 
and the direction of gravity is reversed. The separate analysis for non-uniform 
sea bed sketched in figure l(d) is made for weakly two-dimensional bi-directional 
waves. 

Starting with the governing equations presented in $2, we derive a set of equa- 
tions in 93 for the upper layer. Assuming small hlo/L, we obtain the Green- 
Naghdi (GN) equations (Green & Naghdi 1976), by using a systematic asymp- 
totic expansion method, for waves of arbitrary amplitude which can be further 
reduced to the Boussinesq equations for weakly nonlinear waves. With the evo- 
lution equations for the lower layer derived in $4, we then obtain the complete 
set of equations for the general case of free upper boundary, and equations for 
the rigid-lid situation can be readily obtained as a special case. Since the evolu- 
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RGURE 1. Sketches of typical set-ups of interest for the two-fluid system under consideration. 

tion equations derived in this paper are valid for arbitrary water depth, all known 
nonlinear models can be recovered as special cases. In $5, we discuss the limit 
of great lower-layer depth, in which two-dimensional versions of the ILW or BO 
equation are derived, while the opposite, shallow water, limit is considered in the 
Appendix. We also present some numerical solutions of the bi-directional model 
for one-dimensional waves in deep water. Moreover, in this section we show that 
higher-order equations for the case of great lower-layer depth can be found with 
little modification from the new set of equations for arbitrary depth. Finally, to 
study the long-time behaviour of internal waves propagating from relatively deep 
to shallow water, we derive in $6 evolution equations which include effects of 
a slowly varying sea bed under the assumption of weakly two-dimensional wave 
motion. 

2. Basic equations 
The Cartesian coordinates (x, z )  = (x, y ,  z )  are introduced with origin at the interface 

of two fluids of different densities, p1 for the upper fluid and p2 for the lower fluid. 
The velocity components (ui, wi )  = (ui,ui, w i )  and the pressure pi for inviscid and 
incompressible fluids satisfy the continuity equation and the Euler equations : 
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where V = (a/ax,a/ay) and subscripts with respect to coordinates or time stand 
for partial differentiation. These equations apply to both upper and lower fluids, 
respectively for i = 1 and i = 2. The kinematic and dynamic boundary conditions at 
the upper free surface ( z  = hlo + il) are given by 

l i t  + (ui V)5i = w i ,  pi = Pa + P(x, t )  at z = hi0 + Il(x, t),  (2.4) 

where h ~ o  is the thickness of the undisturbed upper layer, [l(x, t )  is a displacement of 
the upper free surface, p a  is an atmospheric pressure (taken to be zero) and P ( x , t )  
is the external pressure applied to the free surface (see figure la).  At the interface 
( z  = L3, the boundary conditions are 

4'2t + (UI - V)52 = w1, Lr + ( ~ 2  V)52 = w2, PI  = p2 at z = 5 2 k  4. (2.5) 

At the known bottom topography in the lower fluid ( z  = -h2), the kinematic boundary 
condition is given by 

(u2 V)h2 + w2 = 0 at z = -h2(x). (2.6) 

In the following analysis, we will use the layer-mean equations (Wu 1981) obtained 
by integrating (2.1)-(2.2) across the vertical layer of the upper fluid, 5 2  < z < h1~1-51,  
and imposing the boundary conditions (2.4)-(2.5), 

V l t  + v ( V l W  = 0, Vl = hl0 + 51 - 12, (2.7) 
(2.8) ( V l t h  + v (Vlulul) = -VIvp1/PI, 

where ~1 = hlo + 51 - 5 2  is the thickness of the perturbed upper layer and 

Note that these layer-mean equations (2.7)-(2.8) are exact for inviscid and incom- 
pressible fluids and can apply to both rotational and irrotational flows. They imply 
local conservation laws and integration with respect to x from -co to co reveals the 
global conservation laws for mass and horizontal momentum in hydrodynamics. Of 
course, since this system is not closed due to new additional unknowns such as iiiiii, 
it is useful in practice only if a closure scheme, like the one to be discussed in the 
following section, can be devised. 

3. Evolution equations for the thin upper layer 
We assume that the upper layer is thin, i.e. we can introduce a small parameter 

E = hlo/Lal,  where L is characteristic length in the horizontal direction, for example 
wavelength. Then, from (2.1) with i = 1, we have 

3 = O(hl,/L) = O ( E ) Q l .  (3.1) 
IU1 I 

First, we non-dimensionalize the physical variables for the upper fluid as 

} (3.2) 
x = Lx', z = hloz', t = (L/Uo)t', 

p1 = (PlU;)p;, (11,12) = h10(11*,52*), ( U 1 , W l )  = Vo(ul',EW;), 

where Uo is a typical velocity, which we choose as VO = (ghlo)'/2. After dropping 
the asterisks for dimensionless variables, equations (2.7) and (2.8) remain unaltered 
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in form except p 1  = 1 in (2.8) while the vertical momentum equation (2.3) can be 
written as 

plZ = -1 - 2 [ W l t  + (u1 * V)Wl + W l W 1 , ] .  (3.3) 

(3.4) 

By substituting (3.4) into (3.3) and imposing the dynamic boundary condition in 

(3.5) 

and, by substituting (3.4) and (3.5) into (2.2), it follows that u1(') is independent of 
the vertical coordinate, u1(') = ul(0)(x, t ) ,  if the initial condition 

From (3.3), we can expand f = (u1, w1,pl) as 

f(X, 2, t )  = p) + € 2 p )  + 0(€4), 
and notice that no assumption on amplitude is imposed in this expansion. 

(2.4), the leading-order pressure PI(') is obtained as 

p1(') = -(z - 1 1 )  + P ( x ,  t) ,  

&MI(') = o at t = o (3-6) 

is chosen. This condition (3.6) can be fulfilled in some special cases of interest, for 
example (i) irrotational flow, (ii) a flow only with a strong z-directional vorticity 
(such as a rotating fluid for geophysical application), (iii) a flow with continuous 
weak shear or weak stratification, in the sense that the flow is almost uniform in the 
z-direction or the fluid is almost homogeneous in density, and so on. In this paper 
we are interested in a two-fluid system without any initial vorticity, and so we assume 
that the flow in each fluid is irrotational. We can now obtain ,I(') from (2.1) with the 
kinematic boundary condition in (2.5) as 

w1(') = -(V * U l ( O ) ) ( Z  - 5 2 )  + 0 1 5 2 ,  

0 1 5 2  = 1 2 t  + (do) v 1 2 .  

(3.7) 

(3.8) 

azul = 2vW1, (3.9) 

where 

From (3.4), (3.7) and the condition of zero horizontal vorticity given by 

it is easy to show that, if condition (3.6) holds, 

? I - =  V l s z y s r ;  + 0(f4), (3.10) 

and the layer-mean horizontal momentum equation (2.8) in dimensionless form can 
be written as 

(3.11) 
At 0(e2), from (3.3), the equation for p1 is given by 

- 
U l t  + (sr; V)szy = -5 + 0(€4) .  

a z p p  = - [atwl(') + ( u p  * V ) w p  + w,(')azwl(')] 

= G l k  t)(z - 5 2 )  + F l k  t ) ,  (3.12) 

where we have used the expression (3.7) for w1(') and F1 and G1 are defined as 
2 

G l ( x , t ) = V . ~ , u 1 ( ' ) + ~ 1 ( ' ) * V ( V . ~ 1 ( ' ) )  - ( V * U ~ ( ' ) )  , F l ( ~ , t )  =-Di2[2.  (3.13) 

By imposing the dynamic boundary condition in (2.4), P I ( ' )  can be written as 
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From (3.5) and (3.14), the right-hand-side term of the horizontal momentum equation 
(3.11) is given by 

vpl = -v (pl(o) + e2pl(1)) + 0 ( ~ 4 )  

= Vil  + V P  

1 1 
-62 [ K ~  ( :q13~1+ i q 1 2 ~ l )  + ( + q l ~ l  + F ~ )  vc2 + 0 ( € 4 ) ,  (3.15) 

and, from (2.7) and (3.11) with (3.15), the final equations for the upper fluid can be 
written, in dimensional form, as 

~ i ~ + V * ( ~ i 6 ) = 0 ,  71 = h i o + i i - i 2 ,  (3.16) 

 it +izT*VK++VCi = -VP/p i  + -V(;ql3G1 + i q i 2 F i )  + ( iq iG1 + Fi) Vi2 + O(e4). 

(3.17) 
Here UI(') is replaced by izT in the expression for G1 given by (3.13) in this approx- 
imation. While the first equation (3.16) implying conservation of mass is exact, the 
momentum equation (3.17) has an error term of O(e4).  This is the same system of 
equations as the one derived by Green & Naghdi (1976) for open channel flows based 
on the director-sheet model, when we take iZ(x, t )  as a known bottom topography. 
From our derivation, it can be seen that this set of equations is valid for long waves of 
finite amplitude comparable to the thickness of the layer. It is also apparent that this 
system can be regarded as the higher-order version of the shallow water equations? 
since the leading-order dispersive terms of O(e2)  neglected in the classical shallow 
water equations (Lamb 1932, $187) have now been included. 

Up to now, we have not made any assumption on the amplitude of the dependent 
variables and the only small parameter we have introduced is the aspect ratio E. When 
the depth of the lower layer h20 is comparable to hlo (in other words, for shallow 
water), equations for the lower fluid can be readily written from (3.16)-(3.17) without 
further analysis (see the Appendix). However, in order to find evolution equations for 
a lower fluid of arbitrary depth, we will consider weak nonlinear effects from now on. 
We introduce another small parameter a defined by 

a = a /h loQl ,  (3.18) 

where a is a characteristic wave amplitude, so that equations (3.16)-(3.17) reduce, in 
this regime of weakly nonlinear waves, to 

(3.19) 

1 

V l  

- 

q l t  + V ( q l q )  = 0, qi = hi0 + 51 - 52, 

q t + q * V % i + g V [ l  = - V P / p i + V ( ~ h l o 2 V . U l t - ~ h 1 0 c 2 t t ) + O ( a ~  4 ,a 2 2  6 ) .  (3.20) 
Here we have assumed 

i l l h l 0  = 0(12/h10) = OWl/Uo) = O ( 4 ,  (3.21) 

and e2 < a < E in order to take the leading-order nonlinear and dispersive effects 
into account. For balance between these two effects, the scaling between a and E is 
known to be a = O(e2) for shallow water and a = O(E)  for deep water (as we shall see 

7 Recently, Wei el al. (1995) also derived a fully nonlinear Boussinesq model for shallow water 
which reduces to the Green-Naghdi model when the depth-mean horizontal velocity is used as 
dependent variable rather than the horizontal velocity at a prescribed height. 
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later). Notice that (3.19) and (3.20) are the Boussinesq equations for surface waves in 
shallow water when 4'2 is regarded as a known bottom topography (Whitham 1974; 
Wu 1987). 

For a two-fluid system, the required matching condition across the interface between 
the two fluids is the pressure continuity given by (2.5), which becomes 

P2@, 1 2 ,  t )  = Pl@, 4'2, t )  
= - P d 1 2  - ( 1 )  + p - P1 ($712G1 + VlF1) + 0k4) 

4 2 2  
= -PIg(C2 - 4 '1 )  + f' - P I  ( ihio2V * b t  - h10rztt) + O(a6 ,a 6 ), (3.22) 

after (3.5) and (3.14) are used to evaluate pl (x ,12 , t )  and, in the last expression, we 
impose the weakly nonlinear assumption (3.21). We now have the complete set of 
equations governing the dynamics of the upper fluid, under the thin layer and weak 
nonlinearity assumptions: the kinematic equation (3.19), the dynamic equation (3.20) 
and the matching condition (3.22). 

4. Evolution equations for the lower fluid 
To derive evolution equations for the lower fluid of arbitrary depth, we follow the 

method developed in Choi (1995) for surface waves. We present the essential points 
and refer the reader to Choi (1995) for details. Throughout this section, we assume a 
flat bottom at z = -hzO in the lower fluid. The effects of a non-uniform sea bed will 
be considered in $6. 

For the lower fluid of arbitrary depth, it is more appropriate to use the physical 
variables evaluated at the interface (at z = ( 2 )  rather than the layer-mean value used 
for the thin upper layer. By substituting z = l2 into the Euler equations (2.2)-(2.3) 
with i = 2, the dynamic equation for the horizontal velocity vector of the lower fluid 
evaluated at the interface is given by 

where 

In deriving (4.1), we have used the chain rule for differentiation and the kinematic 
boundary condition (2.5). The resulting dynamic equation (4.1) is exact. For weak 
nonlinearity (3.21) and under the assumption &/% = 0(1), (4.1) is approximately 

uz = uz(x, 1 2 ,  t ) ,  p2 = p d x ,  4'2, t ) ,  0 2 r 2  = r 2 t  + uz - vr2. (4.2) 

u z t  + uz * vuz + gV52 = -vp,/p2 + O(a22) ,  (4.3) 

where we have dropped D224'2V12 - r2ttV12 from (4.1) for consistency with the 
approximations leading to (3.19)-( 3.20). After imposing the matching condition 
(3.22), the dynamic equation (4.3) becomes 

Gt + u2 * VU, + (1 - pr)gV4'2 + prgV11 
= - V P / P ~  + PrV ( i h l o 2 ~  * iT;t - h1052tt) + o ( ~ ~ ~ ,  (4.4) 

where we assume pr = ( p l / p 2 )  < 1 for stable stratification. We now have determined 
the dynamic equation for the lower fluid consistent with the level of approximation 
of the dynamic and kinematic evolution equations for the upper fluid. The remaining 
step is to find the kinematic equation for the lower fluid. 

Since we have assumed that the flow is irrotational, we can introduce the velocity 
potential +(x,z , t )  for the lower fluid which, from the continuity equation (2.1) for 
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i = 2, solves the following boundary value problem: 
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( ~ 2  + as> 4 = o for - h20 < z < 52(x, t),  (4.5) 

with, from (2.5)-(2.6), the kinematic boundary conditions given by 

42 - vr2 v4 = 1 2 t  at z = C2(x, t ) ,  (4.6) 
4z = 0 at z = -h20, (4.7) 

where ( V 4 ,  @ 2 )  = (u2, w2) and the depth of the lower fluid hzO is constant. 
By expanding (4.6) about z = 0 in Taylor series as 

42 = 1zt  + V - (126) + 0(a3e3)  at z = 0, (4.8) 

and using the Fourier transform method, we can find the formal solution of (4.5) 
correct up to O(a2e2) in the strip -h20 < z < 0. This yields (see Choi (1995) for 
details) 

1 2 t  + V ( 1 2 6 )  = T [ V ~ ( X ,  0, t )]  , 
where T [u] is defined by 

(4.9) 

T - [v] = 1 1" s m ( V  u )  K (  Ix - x'[ ;h20) dx' dy', (4.10) 
2.n -m -m 

with 

K(lxI;h20) = - tanh(kh20) Jo(klxl) dk, (4.1 1) 

and Jo(x) is the zeroth-order Bessel function. By expanding 6 about z = 0, the 
expression for V+(x,  0, t )  can be found, in terms of r 2  and 6, as 

I" 
(4.12) 

Substituting (4.12) into (4.9) yields the kinematic equation for the lower fluid, correct 
up to the second order in the wave slope parameter ae, 

12t  + V 6 ( 5 2 6 )  - T * [6 - [ Z V C ~ ~ ]  = O(a3c3).  (4.13) 

Finally, with (3.19), (3.20), (4.4) and (4.13), we have the complete set of equations 
for the displacement of the upper free surface 11 ,  the displacement of the interface 
1 2 ,  the depth-mean velocity across the thin upper layer iii and the velocity of the 
lower fluid evaluated at the interface 6. In dimensional form, the complete system 
is 

(4.14) 

(4.15) 

V l t  + v * (VlK) = 0, rll = hl0 + 51 - 1 2 ,  
- 
Ult  + iii V K  + gv11 = -VP/pt  + v ( +h102V * i i i t  - ;h10r2t t )  , 

U2t+U2'V6+(1--r)gV12+prgV11 = -VP/p2+prV ( i h t 0 ~ V . q t - h t 0 5 2 t t )  7 (4.16) 

r 2 t  + v * ( l26)  - T ' [hi - 12vi2t] = 0. (4.17) 

By substituting the leading-order equations such as r 2 t  = c l t  + hloV * % + O(a2) from 
(4.14) into the higher-order terms containing time derivatives, we can obtain various 
other forms of equations asymptotically equivalent to (4.14)-(4.17), all of which have 
relative errors of O(ae4,a2e2) with f2  ,< a < e. In this respect, notice that the 
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double time derivative r z t t  in (4.15)-(4.16) could represent a short-hand notation for 

For one-dimensional waves, T -  [&I can be reduced, after performing the integration 
T [&I. 

in (4.10) with respect to y, to S[G]  defined by 

dx' , GW, t )  S[G]  = --9 
2hz0 I" sinh [(71/2h20)(~' - x)] 

(4.18) 

where 9 stands for the integration as Cauchy principal value. From (4.14)-(4.17), the 
equations for one-dimensional waves are given, in dimensional form, by 

(4.19) 

(4.20) 

vllt + ( r l a x  = 0, vl1 = hl0 + r 1  - 1 2 ,  

- 
U l t  + KKX + gr1, = -Px/p l  + fh102Kxxt - ;h10r2xtt, 

Gt + GGx + ( 1  - pr)gr2x + prgrlx = - P x / p 2  + pr  ( ;hl~%xxt  - h1052xtt) 9 (4.21) 

r 2 t  + ( G r 2 ) x  - S [G - r 2 r z x t ]  = 0. (4.22) 

The dispersion relation for the linearized version of equations (4.19)-(4.22) is deter- 
mined from the following equation for the wave frequency o: 

o4 [ (1 + $k2h1o2) / tanh(khZo) + prkhlo (1  + &k2h1o2)] 

- d g k  [khlo/ tanh(kh20) + (1 + $c2hlo2)] + (1  - pr)g2k3hlo = 0, (4.23) 

where k is the wavenumber. The linear dispersion relation (4.23) is consistent with 
the small-khlo limit of the full linear dispersion relation for a system of two fluids 
of finite depth (Lamb 1932, $231). Since (4.23) is a quadratic equation in 02, two 
independent wave modes exist and the evolution equations (4.14)-(4.17) (or (4.19)- 
(4.22)) support both surface and internal wave modes. For example, when taking the 
limit of kh20 -+ 00, we have the surface wave mode c2 = 0 2 / k 2  = g/k and the internal 
wave mode c2 = ghlo( 1 - p r )  at leading order for small khlo. 

As pr approaches 1, the leading-order terms in (4.14)-(4.17) imply that 5 1 / [ 2  tends 
to zero (Lamb 1932, $231). In this case, the rigid-lid approximation can be used to 
study internal wave modes only. For the rigid-lid case, equations (4.14)-(4.17) are 
still the governing equations when P is regarded as the unknown pressure at the rigid 
lid and r l  is considered as a known perturbation to the flat rigid lid. By eliminating 
the unknown pressure P from (4.19)-(4.22) for one-dimensional waves, we obtain the 
evolution equations for the rigid-lid case as 

r 2 t  - [ ( h l ,  + 51 - i2)K] = r 1 t ,  (4.24) 

- 1 
U l t  + KKX - - - 1 g r z x  = - (Gt + GGx) + $h102Kxxt + $ h l O r l x t t ,  (4.25) 

( j r  1 pr 

r 2 t  + (Gr2)x - [G - r z r z , , ]  = 0, (4.26) 

where we have used ( 2 t  = ( l t  + 
The evolution equations for one-dimensional waves (4.19)-(4.22) (or (4.24)-(4.26)) 

can also be obtained from equations derived by Matsuno (1993~) by a change of 
dependent variables (for example, by using the velocity at the free surface instead 
of the layer-mean velocity for the upper fluid). The form presented here has the 
advantage of being more compact. 

+ O(a2) in (4.25). 
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Since the new sets of equations can be applied to a fluid of arbitrary depth, they 
can be reduced to various known equations as special cases. For shallow water 
(hz0 = O(hl0)), (4.14)-(4.17) can be reduced to the Boussinesq equations and to 
the KdV equation for uni-directional waves (see the Appendix). For great lower- 
layer depth (h2&-hIO), they can be reduced to the two-dimensional version of the 
ILW-equation or the BO-equation as we will show in the following section. 

u! Choi and R. Camassa 

5. Equations for a fluid of great lower-layer depth 
For great lower-layer depth (h20+hh10) ,  we assume that a characteristic length in the 

vertical direction for the lower fluid is comparable to L, the typical horizontal length 
scale. It can be noticed, from (2.1) for i = 2, that 

W2IIU2I  = O(1). (5.1) 

By continuity of the normal velocity at z = 1 2  in (2.5) 

u 1  * V 1 2  - w1 = u2 V 5 2  - w 2  at z = [2, ( 5 4  

the leading-order approximation with Vl2  = O(ae) gives 

W 2 I I U l I  = O ( W l / l U l l )  = O(E) at z = 1 2 ,  (5.3) 

where we have used (3.1) in the last expression. From (5.1) and (5.3), we then have 
the following order estimates: 

These estimates can be understood by keeping in mind the fact that the fluid motion 
in the lower layer, excited by the motion of the upper layer, is necessarily small 
compared to the upper-layer motion owing to the relatively larger domain (and mass) 
of the lower fluid. 

Guided by (3.21) and (5.4) (also following Benjamin 1967), we assume 

q / U o  = O(Ci/hio) = 0 ( 1 2 / h 1 0 )  = O(a),  a = O(E),  &/Uo = O(a€) = O(e2), 
(5.5) 

where the second scaling gives the balance between nonlinear and dispersive effects 
in a fluid of great depth. 

By neglecting all terms of order higher than 0(c2), with a = O(e), the set of 
equations (4.14)-(4.17) can be simplified to 

(5.6) 
(5.7) 
(5.8) 
(5.9) 

The set of four equations (5.6)-(5.9) is the complete system governing the dynamics 
of (ll, 1 2 ,  b, &) in a fluid of great lower-layer depth with either free or rigid upper 
boundary. For the case of free upper boundary, P is known and 11 is unknown and 

V l t  + V * ( V l b )  = 0, 
U l t  + T l . v q + g v 1 1  = -VP/p,, 

&t + (1 - p r k V 1 2  + p r g V 1 1  = - V P / p 2 ,  

[zt - T * [&I = 0. 

Vl = hl0 +1l - (2, 
- 
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vice versa for the case of a rigid lid. In deep water (h20 -+ a), T * [&I reduces to 
H - [GI defined by 

(5.10) 

For atmospheric applications (see figure lc), we need to replace g by -g with 
hZ0 .--) 00 in the formulation for the rigid lid, and assume p r  = (pl/pz) > 1 for stable 
stratification. 

5.1. The model equations for uni-directional waves 
To derive uni-directional models, we non-dimensionalize all physical variables with 
respect to hlo and UO = (gh10)1/2 as 

(4 Y )  = ho(2, 9, t = (hlO/UO)t (5.11) 

(K,  i l ,  i2,G, P )  = (Uoll;, h o d ,  hlOf2, volt29 PI UO2&. (5.12) 

For uni-directional waves with weak dependence on y ,  we substitute, from (5.5), the 
following expansions into (5.6)-( 5.9) : 

(5.13) 

f( 5 ,  Y ,  z) = €f(l)  + E 2 f ( 2 )  + . . . , (5.14) 
(5.15) 

fi2(& Y , z )  = f 2.. u2 (1) + . - - ,  (5.16) 

where co is a linear wave speed to be determined and the external forcing P is assumed 
to move with a speed close to co in (5.16). At first order, we have 

2 ^  5 = e(2 - cot), Y = € 3 9 ,  z = E t ,  

f = (fil,El,rh), 
h(5,  Y,Z)  = 3 1 2 ~  v1 (1) + p o 1 ( 2 )  + . . . , 

r; = E 2 n ( < ,  Y , z ) ,  

(5.17) 

i l  = -  - -1  i 2  , d p l  A(1)  =-- g ( - -1  ir ) dy52 A (1) . (5.18) 
A (l) ( i r  ) A (l)  CO 

In (5.17), only internal wave modes are found even though both internal and surface 
wave modes exist in the original system (5.6)-(5.9). We exclude fast modes (surface 
wave modes) in the expansion (5.13) by choosing waves with a constant speed of 
propagation, such as, for instance, solitary waves. 

At O(e2), by imposing the solvability condition, we can obtain the evolution 
equation for [2(x, y ,  t )  which can be written in dimensional form as 

where, from (5.9) and after replacing 5zt  by -c052~, Gx is given by 

(5.20) 
- 
u2x = -co=+ [!2xx] 3 

and F- ' ,  the inverse transform of F, is defined as 
00 

f(x') coth [ z ( x '  - x)] dx'. 
2hz0 

For one-dimensional waves, (5.19) becomes the forced ILW-equation : 

(5.21) 

(5.22) 
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where the positive (negative) co is taken for the right-going (left-going) waves. For 
deep water (h20 -+ GO), F-’[52] in (5.22) reduces to the Hilbert transform Z[52] 

defined by 

(5.23) 

With (5.20) and (5.23), the evolution equation (5.19) (without the forcing term) is 
the equation first derived by Ablowitz & Segur (1980). When the y-dependence is 
dropped, (5.19) is the forced Benjamin-Ono (fB0) equation. 

For the rigid-lid case, the expansions for P and c l  are 

(5.24) 

and, by following procedures similar to the free boundary case, the evolution equation 
for uni-directional waves with weak dependence on y can be found to be 

(5.25) 3c0 coho r - l  CO co 
2hlO 2Pr 2 5 2 t  + CO52x - - - -5252x  + -J t 5 2 x x l )  + ,52yy = - 4 1 x x 9  

X 

where the linear speed co is given by 

co2 = gh1o (; - 1) 9 (5.26) 

and a disturbance at the flat rigid lid, 51(x, t )  = O(e2) ,  is assumed to move with speed 
close to CO. Comparing (5.25) with (5.19), we can see that the pressure forcing P in the 
case of a free upper boundary and the topographical disturbance 5 1  in the rigid-lid 
case have the same effect in the uni-directional weakly nonlinear analysis, a situation 
which is similar to the case of pressure forcing on the free surface versus bottom 
topography in the shallow water problem (Wu 1987). 

5.2. Travelling waves in deep water 
In this section, the bi-directional model for one-dimensional waves in deep water 
(h20 + GO) with a uniform rigid lid (51 = 0) will be studied numerically. From 
(5.6)-(5.9), the bi-directional model in this case is 

5 2 t  - [(hlO - 5 2 ) 4  = 0, (5.27) 

(5.28) 

where I& = &“52,] from (5.9) and 52, = hloFx from (5.27) at the leading-order 
approximation have been used to obtain the right-hand-side term of (5.28). 

The uni-directional model corresponding to (5.27)-( 5.28) is the BO equation given 
by (5.25) with (5.23) and 51 = 0: 

(5.29) 

hl0 
Gt + G K ,  - ($ - 1) g 5 2 x  = --El.,1, 

P r  

5 2 t  + c052x + Y 1 5 2 5 2 x  + Y 2 J m 2 x x l  = 0, 

where the linear wave speed co is given by (5.26) and 

(5.30) 
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This BO model has the periodic solution of wavelength 3, (Benjamin 1967): 

A 
C2p(x) = 1 - B cos (27CXlA) ’ 

(5.31) 

where 

This is a two-parameter family (a,3,) of periodic wave solutions and, as 3, + co, it 
reduces to the solitary wave solution (Benjamin 1967): 

where 

(5.33) 

(5.34) 

As pointed out by Benjamin (1967), the displacement of the interface is always 
downward (a c 0), since y1 and y2 have different signs for both right- and left-going 
waves. Also, from (5.34), the solitary wave is a supercritical phenomenon (6 > 0). 

After we non-dimensionalize all variables with respect to co and hlo (say co = 1, 
hlo = l), we solve (5.27)-(5.28) with periodic boundary conditions in space by using 
the pseudospectral method (Fletcher 1990) with the number of Fourier modes N 2 32 
and a second-order time integration scheme such as the leap-frog method with time 
increment At = 0.2. For all computations, the density ratio p r  = 0.9 is chosen and, 
for the solitary wave solution, large 3, (3, = 400) is taken. 

To test our numerical codes, we study the propagation of a single free solitary wave. 
Since no explicit solitary wave solution is known for this bi-directional model, we take 
as initial conditions (2(x,O) = CzP(x) given by (5.31), F(x,O) = -C+(x) for a right- 
going wave at the leading-order approximation and compare numerical solutions with 
(5.31) at t = 200. For small amplitude (a = -0.05,-0.1), the periodic solution of the 
BO equation approximates well the solution of the bi-directional model as shown in 
figure 2. 

Next, by taking the following initial conditions for 15 and F :  

(5.35) 

we solve (5.27)-(5.28) with a = -0.05. Since there is no preferred direction of wave 
propagation due to (5.39, the initial hump at x = 0 evolves into two identical solitary 
waves propagating in opposite directions. Owing to the periodic boundary condition, 
they collide with waves propagating from adjacent computational domains. As shown 
in figure 3, the numerical solutions show ‘clean’ interaction with no discernible phase 
shift after collision. We also study the head-on collision of two identical solitary waves 
of amplitude a = -0.05, originally located at x = +xo but with opposite directions 
of propagation : 

Cz(x,O) = C Z , + ( ~ - - - O ) + C ~ ~ ( X + ~ O ) ,  ~ l (x ,O)  = C ~ , + ( ~ - - O ) - C ~ ~ ( X + X O )  at t = 0, 
(5.36) 

where xo = 100 is taken in the computations. As shown in figure 4, the numerical 
solutions at t = 200 show a small phase shift compared with the two-solitary-wave 
solution given by (5.31) without interaction. This phase shift seems to persist even 

- 
C 2 ( X , O )  = CZP(X), Ul(X,O) = 0 at t = 0, 

- 
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FIGURE 2. Comparison of the numerical solution for a travelling wave of the bi-directional model 
(5.27)-(5.28) at t = 200 with the travelling wave solution of the BO equation given by (5.31) with 
1 = 400, initially located at x = -100: -, numerical solution; . . . , solution of the BO equation. 
(a) a = -0.05 (b)  a = -0.1. 
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FIGURE 3. Evolution of the interface from the initial condition iii(x,O) = 0 and [z(x,O) = &&(x) 
given by (5.31) with a = -0.05 and 1 = 400. 
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FIGURE 4. Head-on collision of two solitary waves. Numerical solutions (-) are compared with 
the linear superposition of the two-solitary-wave solution (...), given by (5.31) with 1 = 400, at 
t = 200. Initially two identical solitary waves of amplitude a = -0.05 propagating in opposite 
directions were located at x = *loo. 

when we use a higher-order time integration scheme, or increase the number of 
Fourier modes or the spacing between initial waves. 

For finite hzO( +hlo), (5.27)-(5.28) are still the governing equations for bi-directional 
waves when the Hilbert transform ~8 is replaced by Y-' defined in (5.21). In this 
case calculations similar to the infinite-depth case can be carried out by using the 
periodic steady wave solution of the ILW-equation obtained by Miloh (1990). 

5.3. The higher-order equations for the case of a rigid lid 
In order to derive equations (5.6)-(5.9), we have neglected terms of order higher 
than O(e2)  with a = O(e)  from (4.14)-(4.17). However, without any further analysis, 
higher-order equations correct up to O(e3)  can be easily found for the case of great 
lower-layer depth (h20+h10). Since the terms neglected in (4.14)-(4.17) are O(e4) with 
the scaling in (5.5), equations (4.14)-(4.17) are the consistent higher-order equations 
for h20+hlo if we drop U, - VG, which is O(e4), from (5.5). 

For the rigid-lid case, equations (4.14)-(4.17) without G VU, are also the higher- 
order equations for unknown pressure P and known disturbance at the rigid 
lid. However, [I = O(e)  is too restrictive to model a topographic disturbance like a 
mountain in the atmosphere, and the more general assumption [l/hlo = 0(1) and 
clx = O(e)  is desirable. The rest of this section will be devoted to the derivation 
of the higher-order equations modelling the effects of topographical disturbances of 
finite amplitude at the rigid lid for the case of h20+h10. 

For the upper fluid, we recall that the GN equations (3.16)-(3.17) are the governing 
equations for arbitrary amplitudes of and [2. By imposing c l /h lo  = 0(1) and 
c2/h10 = O(E)  on the dynamic equation (3.17) and applying the matching condition 
(3.22) on (4.3), we can obtain two dynamic equations, which replace (4.15) and (4.16): 

- 1 

hl 
Ul t  + w v~ + gvc, = -vPIpl + -v p 1 3 v  - qiit - ;h12c2tt) + 0(€4), (5.37) 
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where we assume a stationary disturbance at the rigid lid rl = ll(x), and 
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h l b )  = hl0 + i l ( X ) .  (5.39) 

Equations (4.14), (4.17), (5.37) and (5.38) are the higher-order system for the case of a 
rigid lid with a topographical disturbance [ l /h lo  = O(1). For one-dimensional waves, 
by eliminating P from (5.37) and (5.38), we can simplify the governing equations to 

r2t  - [(hl - r 2 k ]  = 0, (5.40) 

- 1 r - 1  U I t + K U l x -  - - 1 g h X  = --J [(hi-C2)KJxt-:h1~Ulm + i h l  ( h ~ K t ) ~ ~ ,  (5.41) 
( i r  ) P r  

where we have used [ z t  = [(hl - c2)K] in (5.41). 
As a special case of a flat rigid lid in deep water (hl = hlo and h20 + a), the 

uni-directional model (5.40)-( 5.41) can be readily obtained, by using the expansion 
method introduced in $5.1, as 

X 

3c0 CO 

8hlO 2Pr 
- 7 r 2  CzX - - ( $ z [ 5 2 M x  + :52H[Lx1 + r 2 x z [ i z x 1 )  = 0, (5.42) 

where co is given by (5.26). This is the higher-order Benjamin-Ono equation derived 
by Matsuno (1994). 

6. Effects of a slowly varying sea bed 
In this section, we consider the effects of a non-uniform 'sea bed' in the lower fluid 

of finite depth (see figure Id), which have been neglected in the previous analysis. 
Although the evolution equations (4.14)-(4.15) for the upper fluid and the dynamic 
equation (4.16) for the lower fluid remain valid for the case of non-uniform bottom, 
the kinematic equation for the lower fluid has to be modified. The governing equation 
for the velocity potential 4 becomes (4.5) with (4.6) and, instead of (4.7), the kinematic 
boundary condition at z = -h2(x ,y )  

4z = -V4  Vh2 at z = -h2(x, y), (6.1) 

must be imposed. For a small variation from a flat bottom (l(h2 - h20)/h201d1), the 
Fourier transform method introduced in $4 can still be used after expanding the 
bottom boundary condition (6.1) about z = -h20. However, we are interested in the 
case of I(h2-h20)/h201 = 0(1) and hzxQ1. In order to keep the analysis simple, we only 
consider weakly two-dimensional waves with h2y/h2x Q 1 for which the non-uniform 
bottom at z = -h2(x , y )  can be transformed into one at z1 = --b(y) via conformal 
mapping. The Fourier transform method can then be used by regarding y as a 
parameter as we shall presently see. 

Let L, be a characteristic length in the y-direction and introduce the small param- 
eter p defined by 

E uation (6.2) characterizes the assumed weak y-dependence of the flow, implying 
a, = O(ae), so that we can introduce the slow variable ys = py for the y-coordinate. 

p = L/Ly ,  p2 = O(ae). (6.2) 

9 
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We first need a transformation that maps the (x, y,, z)-plane into the (XI, y,, z1)-plane 
where the bottom is independent of xl. The mapping function from -h2(x,ys) < z d 0 
to -b(y,) < z1 < 0 is given by (Matsuno 19936) 

A 

where ht(xl,y,) = hZ(x(xI,-b),y,) and y, can be regarded as a parameter. Assuming 
a slowly varying bottom such as 

h2(x,ys) = h2(6x,6ys) = 0(1), 6 = L/Lh = O(cte), (6.4) 

where Lh is a characteristic length for the bottom variation, the leading-order term 
in (6.3), after we expand &(ax1 + 6x’,,6yS) for small 6x’, and integrate with respect 
to xi, gives 

A 

a Z  ax aZ ax 
azl ax, 

z1 + o(s3), (6.5) - = - -  - (;) +0(62), - 

where we have used the Cauchy-Riemann relations. We also have 
h 

ax, azl ax, azl 
ax az (i) + 0 ( S 2 ) ,  - a Z  - - -- ax = 6 (2) (i) zi + O(S3) ,  (6.6) 
- = - =  

and integrating dxl/ax with respect to x gives 

xi = lx b(6ys) dx’ + 0 ( S 2 ) ,  dx = (&/b)  dxl + O(S2).  (6.7) 
h2(6X’, 6YS) 

From (4.5)-(4.6) and (6.1), the governing equations can then be transformed into 

= 0 for -b(dy,) < z1 < 0, (6.8) 

JZl = ( O b )  &(X1,ys,t) at z1= 0, (6.9) 

where 

(6.10) 

(6.11) 

and the errors in (6.8)-(6.10) are O(a3e3). In (6.9), R(x,y,,t) is the vertical velocity at 
z = 0 given, from (4.8) after imposing (6.2), by 

Wx, Y,, t )  = 5 2 t  + (52G)x + O(a3e3). (6.12) 

One way to solve (6.8)-(6.10) is to expand all dependent variables in powers of (a€) 
and solve (6.8) by taking the one-dimensional Fourier transform at each order (in the 
second order, the governing equation becomes the Poisson equation due to 4ysy,). A 
less rigorous but convenient way is to define y. = (b/&)y and regard &(dx1,6yS) and 
b(dy,) as constants since they are slowly varying. Then the same method as in Choi 
(1995) can be used to find the evolution equation. Following the second approach (for 
details, see the steps in $64 and 5.3 of Choi 1995), we obtain the kinematic equation 
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for weakly two-dimensional waves in the form 

K Choi and R.  Camassa 

~, 

where F 2  is given by 
1 rw 

(6.14) 

By imposing the condition of irrotational flow, iiiy = i& and Gy = Gx at the leading 
order, fl  and can be eliminated from (4.14)-(4.16) and (6.13) after using (6.2) 
and differentiating the equations with respect to x .  The complete set of equations 
in dimensional form for weakly two-dimensional waves in a fluid of slowly varying 
depth is 

(6.15) 

(6.16) 
r l x t  + ( V l i i l ) ,  + h1oKyy = 0, V l  = h o  + Cl  - r 2 ,  

Kt + li;iilx + g C l x  = - P x / p i  + ~ h i o z U l x x t  - :hioCzxtt, 

Gt + GGX + (1 - p r ) g ~ 2 ,  + P r g C l x  = - p x / p 2  + i p r h l o 2 K x x t  - h l o ~ z x t t ,  (6.17) 

( h 2 r 2 t  - h 2 Y 2 [ G l )  xx + h2 [ ( G C 2 I x  + YZICZCZxt l ]  xx 

- 4 h 2 9 2 [ G y y ]  + i h 2 ’  (Gy, + Fz92[Gyy]) = 0, (6.18) 

where hzx = O(6) = O(ae) and 

F 2 [ h 2 f l  = h 2 ~ z L f l  + O(6) (6.19) 

have been used to obtain (6.18) from (6.13). Since no restriction on the depth is 
imposed, (6.15)-(6.18) can be used to study the evolution of internal waves generated 
in relatively deep water and propagating into shallower water. For the rigid-lid case, 
we can simplify the evolution equations (6.15)-(6.18) by eliminating P as before. 
Notice that (6.18) can be reduced to the kinematic equation derived by Matsuno 
(1993b) for one-dimensional surface waves in a fluid of slowly varying depth by 
dropping the y-dependence and to the equation for weakly two-dimensional surface 
waves (Matsuno 1993c) by assuming uniform depth h 2 ( x )  = hzO. 

7. Conclusions 
We have derived various sets of nonlinear evolution equations for two-dimensional 

waves in a two-fluid system of arbitrary depth with either a free or rigid upper 
boundary. The elevations of the free surface and interface between two fluids 
are assumed to be small compared with the thickness of the upper layer while the 
amplitude of topographical disturbances at the rigid lid or at the sea bed can be finite. 
These new equations for waves propagating in a non-homogeneous medium due to 
mountains or a slowly varying sea bed might be valuable for practical applications. 
Most of the well-known nonlinear models are shown to be recovered as special cases 
and other nonlinear models can be derived directly from the new set of equations by 
taking the limit appropriate to the problem of interest. 
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Our analysis is based on the assumption of the upper layer being thin compared 
with a characteristic wavelength, but it can be extended to the case of both layers being 
of finite depth. However this would considerably increase the difficulty in solving 
the resulting equations owing to appearance of an additional non-local operator. 
Although we only consider the case of two-layer fluids in this paper, the model for 
many layers can be easily obtained by the approach adopted here. Also, higher-order 
equations for a fluid of arbitrary depth can be derived with the combination of the 
higher-order Boussinesq equations for the upper fluid and the third-order evolution 
equation for the lower fluid derived in Choi (1995). The numerical scheme developed 
here has been used only for a few examples in deep water chosen for their simplicity, 
but it can be adapted to more complicated cases. 

This work was partially supported by the US Department of Energy through the 
CHAMMP program and the Applied Mathematical Sciences contract KC-07-01-01. 

Appendix. The coupled Green-Naghdi equations for shallow water 
In 93, we have shown that the nonlinear evolution equations valid for finite- 

amplitude long waves are the GN equations for a thin upper fluid layer. If the depth of 
the lower fluid is comparable to that of the upper fluid, say h2*/h10 = 0(1), equations 
for the lower fluid corresponding to (3.16)-(3.17) can be readily written without any 
further analysis. In this Appendix, the slowly varying bottom at z = +(X) is also 
included in the analysis. 

BY replacing (h10 - CZ, (1, iii, Plpd  in (3.16)-(3.17) by (h2, (2, u2, f i l p ~ ) ,  equations 
for the lower fluid can be obtained as 

qzt + V (y/z@) = 0, ~2 = 52 + hz, (A 1) 

- 1 

V2 
U2r+K'VK+gVr2 = -vfi/p2+-v(1 3Vz3G2 + i~2~F2)  - ( i ~ 2 G 2  +Fz) Vh2, (A21 

where 
1 P52 

G ~ ( x ,  t) = V * Kt  + * V(V K )  - (V . K)2, F~(x, t )  = (6 * V)2h2. (A 4) 

(A 5) 

By substituting (3.22) for f i ,  which reads 

6 = -Plg(r2 - (1) + P - P1 (;GlV? + PlVl) , 
where Ft and GI are given in (3.13), into (A2), the complete set of equations for four 
unknowns (rl ,  (2, F and 112) is given by (3.16), (3.17), (A 1) and (A2) with (A 5) which 
are the (coupled) GN equations for two-dimensional internal waves in a two-fluid 
system. It can be shown that the structure of the GN equations for the one-layer 
case, for example energy conservation and Hamiltonian structure, carries over to the 
two-fluid system as well. 

For weakly nonlinear waves of the Boussinesq family with ct = 0(2), the GN 
system can be further reduced to the Boussinesq equations which, for the case of a 
free upper boundary, can be written as 

V l t  + v - ( V l i i i )  = 0, q1 = hl0 + i t  - (2, (A 6) 

(A 7) 
- 
Ult + 6. viii + gV(1 = -VP/p1 + fhl*2V(V -iQ - ;h10V52tt, 
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- 
U2t + 6 * V% + g ( 1  - pr)V52 + gprVS1 = -VP/p2 

+ 4h22V(V * et) + prV ( ihio2V * @ i t  - hi052tt) , (A 9) 

where terms neglected in this set of equations are less than O(ae4,a2f2) with the 
following order estimations : 

lTlllU0 = ~(luZl/Uo) = ~ ( 5 1 / h l O )  = W 2 / h 1 * )  = O ( 4 ,  (A 10) 
h2/hlO = O(1), Vh2 = O(ae). (A 11) 

For uni-directional waves, equations (A 6)-(A 9) can be reduced to the equation of the 
KdV-family, in other words the classical KdV equation (Benjamin 1966), the forced 
KdV (Grimshaw & Smyth 1986; Zhu, Wu & Yates 1986) and the KdV equation with 
variable coefficients for uneven bottom (Kakutani 1971 ; Johnson 1972). 

For the flat-bottom case (h2 = h20), the Boussinesq system (A7)-(A9) can also 
be obtained from our new set of equations (4.14)-(4.17) by using the following 
relationship between the velocity at the interface 6 and the depth-mean velocity 
across the lower layer &: 

(A 12) 
2 2- 6 = 6 - :h20 V ~2 + O(a2e2, 

and the shallow water limit for T [GI 
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